martes, 23 de marzo de 2010

7.3 Fotoquímica de la visión.





Componentes de la retina.

En los fotorreceptores se produce una transducción foto-quimio-eléctrica que da lugar a que en la terminal sináptica se libere mayor o menor cantidad de NT en relación con la magnitud del potencial receptor.

La estimulación de los fotorreceptores se inicia por la absorción de la luz por el pigmento visual y el efecto fotoquímico correspondiente; ello lleva consigo cambios de permeabilidad iónica y génesis de potencial receptor que, desde el segmento externo, pasa al segmento interno y se transmite a la región sináptica donde, mediada por un transmisor, la señal alcanza otras neuronas retinianas (bipolares y horizontales).

Los fotorreceptores son distintos al resto de receptores sensoriales pues no detectan impulsos nerviosos típicos; sin embargo, en los bastones y conos, al ser alcanzados por la luz, se establecen unas ciertas condiciones físico-químicas que van a desencadenar el impulso de otras células nerviosas. Donde si se detectan los impulsos nerviosos es en el nervio óptico, por fibras nerviosas de las células ganglionares.

Sin lugar a equivocarnos, la fotoquímica de la visión es el mecanismo más complicado y preciso de los sentidos. Este complejo mecanismo se estudia en tres apartados: ciclo del pigmento visual, generación del potencial receptor y adaptación a la luz y oscuridad.

1) CICLO DEL PIGMENTO VISUAL. Los pigmentos visuales son proteínas complejas; pero se ha visto que la parte del pigmento que absorbe la luz (porción cromatófora) es una sustancia muy parecida a la vitamina A, se trata del aldehído de la vitamina A (retinal) en sus formas cis y trans. Los pigmentos visuales de la membrana fotosensible de bastones y conos son diferentes. En los bastones se encuentra la rodopsina y en los conos hay yodopsina. Para explicar los mecanismos fotoquímicos de la visión nos referiremos a los bastones por estar mejor estudiados.
La rodopsina, proteína de la membrana de los discos de los bastones, tiene dos componentes, una proteína llamada opsina y un pigmento llamado retinal (11-cis-retinal). En presencia de luz, la rodopsina, en una billonésima de segundo, comienza a descomponerse, a través de varias formas intermedias hacia el 11-trans-retinal, más estable, con escisión de la parte proteica, lo que provoca pérdida de color de la molécula (blanqueamiento) y esto significa que no genera potencial receptor.

La rodopsina se sintetiza en ausencia relativa de luz y su síntesis implica la actuación de una enzima con aporte de energía metabólica para la reducción de todo el trans-retinal a cis-retinal. Después, este cis-retinal se recombina con la opsina para formar de nuevo rodopsina.


2) GENERACIÓN DEL POTENCIAL RECEPTOR. En los conos y bastones no existe potencial de acción, sólo un potencial receptor que se transmite al resto de las células nerviosas, siendo las células ganglionares las encargadas de transmitir los potenciales de acción a través del nervio óptico.


El mecanismo de producción del potencial receptor es el siguiente: la bomba Na+/K+ está restringida a la membrana que rodea el núcleo y el segmento interno impulsa continuamente iones Na+ desde el interior al exterior y, por tanto, crea un potencial negativo dentro de la célula. Sin embargo, en oscuridad, la membrana del segmento externo se hace permeable y deja pasar fácilmente el Na+ y así neutraliza en gran parte la negatividad del interior de toda la célula, dando un potencial receptor a los bastones de -25 a -30 mV. Este potencial receptor es proporcional al logaritmo de la intensidad de la luz, y así el ojo puede distinguir entre intensidades luminosas muy variadas. Cuando la rodopsina se expone a la luz, se descompone y esto hace disminuir la conductancia de los iones Na+ hacia el interior del bastón, aunque sigan impulsándose iones desde el segmento interno hacia el exterior. De esta forma, resulta que hay salida de iones positivos sin la correspondiente entrada de los mismos por el segmento externo; lo que produce aumento de la negatividad intracelular (estado de hiperpolarización), alcanzándose valores de -90 mV.


Puesto que la membrana plasmática del bastón está separada de la de los discos que contienen el pigmento fotosensible, el efecto de la disminución de la permeabilidad para el Na+ debe depende de un mediador químico como es el GMPc. Al parecer, el GMPc se encarga de mantener los canales de Na+ en configuración abierta; la luz activa una proteína, llamada transducina, en la membrana del fotorreceptor que promueve la acción de una fosfodiesterasa que hidroliza el GMPc, lo que hace que los canales de Na+ se cierren y la membrana se hiperpolarize.

3) Adaptación a la luz y a la oscuridad. Los ojos son capaces de adaptarse a niveles altos y bajos de intensidad luminosa. La adaptación a la luz ocurre cuando el animal es expuesto a la luz brillante, como al salir de un establo en un día soleado. Esto provoca que las sustancias fotoquímicas de los bastones y conos se reduzcan a opsinas y retinal, lo que hace disminuir la sensibilidad del ojo a la luz. Al mismo tiempo, el diámetro de la pupila se reduce por constricción refleja parasimpática del músculo constrictor pupilar, disminuyendo la cantidad de luz que entra al ojo.

La adaptación a la oscuridad ocurre cuando el animal se desplaza de un ambiente bien iluminado a un lugar oscuro, o más gradualmente al oscurecer en la tarde. En la oscuridad, todo el retinal está incorporado a la rodopsina y gran parte de la vitamina A del epitelio pigmentario es absorbida por los bastones cuyo contenido en rodopsina será máximo y su sensibilidad a la luz también. De esta forma, la reconstitución de las sustancias fotoquímicas permite a los ojos detectar niveles muy bajos de intensidad luminosa

http://www.uco.es/organiza/departamentos/publicaciones/fisiovet/tema4.html
http://www.monografias.com/trabajos46/vision/vision2.shtml
http://images.google.com.mx/imgres?imgurl=http://www.uco.es/organiza/departamentos/publicaciones/fisiovet/Image7.gif&imgrefurl=http://www.uco.es/organiza/departamentos/publicaciones/fisiovet/tema4.html&usg=__IE6zBnVzrw8l90q5jQDME_4-RB4=&h=1896&w=1504&sz=44&hl=es&start=1&sig2=hlca--c0B2R8fPv2GyMIzw&um=1&itbs=1&tbnid=B0mcLB7MvkQ67M:&tbnh=150&tbnw=119&prev=/images%3Fq%3Dfotoqu%25C3%25ADmica%2Bde%2Bla%2Bvisi%25C3%25B3n%26um%3D1%26hl%3Des%26safe%3Dactive%26sa%3DN%26tbs%3Disch:1&ei=SLKqS5D4KM-ztgep3_3IBQ

No hay comentarios:

Publicar un comentario